Month: November 2017

Renaissance Portraits Made From Single Thread on Circular Loom

Using a single thread roughly 1-2 km long (0.6 – 1.2 mi), Petros Vrellis continuously wraps the thread in straight, continuous lines, from one peg to its direct opposite peg in a circular, 28″ loom with 200 evenly spaced anchor pegs on its circumference. Thus each artwork is made from 3,000 – 4,000 continuously intersecting straight lines of a single thread.

Interestingly, knitting is done by hand, with step-by-step instructions dictated by a computer algorithm designed by the new media artist. Vrellis explains:

“The pattern is generated from a specially designed algorithm, coded in openframeworks. The algorithm takes as input a digital photograph and outputs the knitting pattern. Over 2 billion calculations are needed to produce each pattern.”

For ‘inputs’, Vrellis used famous portraits by the famous Spanish Renaissance artist El Greco. Below you can see a timelapse video along with close-ups of Petros’ experimental knitting project. For more information check out his official website. If you’re interested in purchasing any of the original artworks you can see what’s currently available on Saatchi Art.

Website | Instagram | Online Store
Website | Instagram | Online Store
Website | Instagram | Online Store
Website | Instagram | Online Store
Website | Instagram | Online Store
Website | Instagram | Online Store
Website | Instagram | Online Store

Read more:

Technorati Tags: , , , , , ,

‘Impossible’ New Zealand maths exam even flummoxes teachers

Complaints being investigated after geometric reasoning section of high school paper left brightest students despondent and in tears

A New Zealand maths exam for high school students has been criticised as impossible with even the brightest students left despondent and in tears at the difficulty of the questions.

New Zealand year 11 students sat the maths exams on Monday and the New Zealand Qualifications Authority has since received a number of complaints regarding the unreasonable difficulty of the paper.

It is the second year in a row NZQA has been criticised for a maths exam and education minister Chris Hipkins has ordered the authority to give him a full report on the matter.

We are trying to enable these kids to do well and you set an exam like this and they come out deflated, it is not giving them much hope for next year, or for maths in general, said Logan Park High School maths teacher Amanda Fraser, who is also president of the Otago Mathematics Association.

I think the exam was off, it was too difficult. I am concerned about the impact it has had on the self-esteem of students. We are are already fighting an uphill battle because there is a stigma around mathematics and this is definitely not helping break down the barriers students have.

Fraser said the geometric reasoning section of the exam was the main stumbling block for average and talented students alike, and she and other maths teachers struggled to work out some of the questions for a test designed for a 15-year-old child.

One student who studied for weeks in preparation for the exam said she was thrown by the difficulty of some of the questions, which tested skills she hadnt been taught.

Both my parents are scientists so I have always been interested in mathematics and always almost assumed Id go into it. It is an important subject for me, she said.

I struggled in the geometric reasoning section but I thought it was because I hadnt prepared enough. A friend of mine was quite shocked, she said They have never asked us to do this sort of maths in any of the practises weve done what happened here?

Deputy chief executive assessment Kristine Kilkelly of NZQA said she believed the test was in line with the national curriculum.

The Level 1 mathematics examination was set by a team of experienced mathematics teachers, for the right curriculum level, and is consistent with the specifications for the standard.

An open letter from teachers is being sent to NZQA and the ministry of education raising concerns about the exam.

Read more:

Technorati Tags: , , ,

We Need to Retool Higher Ed to Defeat Robots

Thousands of years ago, the agricultural revolution led our foraging ancestors to take up the scythe and plough. Hundreds of years ago, the Industrial Revolution pushed farmers out of fields and into factories. Just tens of years ago, the technology revolution ushered many people off the shop floor and into the desk chair and office cube.

Today, we are living through yet another revolution in the way that human beings work for their livelihoodsand once again, this revolution is leaving old certainties scrapped and smoldering on the ash heap of history. Once again, it is being powered by new technologies. But instead of the domesticated grain seed, the cotton gin, or the steam engine, the engine of this revolution is digital and robotic.

We live in a time of technological marvels. Computers continue to speed up while the price of processing power continues to plummet, doubling and redoubling the capabilities of machines. This is driving the advance of machine learningthe ability of computers to learn from data instead of from explicit programmingand the push for artificial intelligence. As economists Erik Brynjolfsson and Andrew McAfee note in their book The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, we have recently hit an inflection point in which our machines have reached their full force to transform the world as comprehensively as James Watts engine transformed an economy that once trundled along on ox carts. Labor experts are increasingly and justifiably worried that computers are becoming so adept at human capabilities that soon there will be no need for any human input at all.

The evidence for this inflection point is everywhere. Driverless cars are now traversing the streets of Pittsburgh, Pennsylvania, and other cities. New robots can climb stairs and open doors with ease. An advanced computer trounced the human grandmaster of the intricate Chinese strategy game Go. Moreover, it is not only the processing power of machines that has skyrocketed exponentially but also the power of their connectivity, their sensors, their GPS systems, and their gyroscopes. Today, we are giving computers not only artificial intelligence but, in effect, artificial eyes, ears, hands, and feet.

Consequently, these capacities are enabling computers to step into rolesand jobsonce held exclusively by members of our species. Robots now analyze stocks, write in deft and informative prose, and interact with customers. Semi-autonomous machines may soon join soldiers on the battlefield. In China, co-botsmachines that can work in factories safely alongside human beingsare upending that countrys vaunted manufacturing sector, allowing fewer laborers to be vastly more productive. In 2015, sales of industrial robots around the world increased by 12 percent over the previous year, rising to nearly a quarter of a million units.

At the same time, Big Data is revolutionizing everything from social science to business, with organizations amassing information in proportions that flirt with the infinite. Algorithms mine bottomless troves of data and then apply the information to new functions, essentially teaching themselves. Machine learning now powers everything from our spam filters to our Amazon shopping lists and dating apps, telling us what to watch, what to buy, and whom to love. Deep learning systems, in which artificial neural networks identify patterns, can now look at an image and recognize a chair or the face of a human individual or teach themselves how to play a video game without ever reading the instructions.

In many ways, these new technologies are an astonishing boon for humanity, giving us the power to mitigate poverty, hunger, and disease. For example, Stanley S. Litow, vice president of corporate citizenship and corporate affairs at IBM, is overseeing an initiative between Memorial Sloan Kettering Hospital in New York City and Watson, the computer that famously beat the human champions of the television game show Jeopardy! A doctor who had watched the show approached IBM with the idea to collaborate. Thus, Watson was reborn as an oncology adviser. Computer scientists at IBM embedded it with information from the hospitals clinical trials (not just some, all of them, said Litow) and trained it through data analytics to respond to oncologists questions.

So it proceeds as if talking to a potential patient, said Litow. On a mobile device I can say, She has the following characteristics. Do we have any information on clinical trials that would help me figure out whether this is the problem or that is the problem? Watson then analyzes the data and responds to the oncologists question in normal English. Theres a lot of clinical trial information, but a lot of doctors dont have access to it, said Litow. It is actually helping some of the best oncologists in the United States make a better, faster diagnosis and move toward a treatment plan quickly. In treating cancer, thats critical.

Automation long has been considered a threat to low-skilled labor, but increasingly, any predictable work is now within the purview of machines.

Watsons next challenge is to improve teaching in the New York City public school system, advising educators on effective teaching practices by using the same data analytics and communication techniques it is deploying with such success at Sloan Kettering. Technologies like Watson are helping people save lives, teach fractions, andin their less sophisticated iterationsfind the nearest parking space. They are helping people work better.

Or they are, for the moment. Automation long has been considered a threat to low-skilled labor, but increasingly, any predictable workincluding many jobs considered knowledge economy jobsis now within the purview of machines. This includes many high-skill functions, such as interpreting medical images, doing legal research, and analyzing data.

As advanced machines and computers become more and more proficient at picking investments, diagnosing disease symptoms, and conversing in natural English, it is difficult not to wonder what the limits to their capabilities are. This is why many observers believe that technologys potential to disrupt our economyand our civilizationis unprecedented.

Over the past few years, my conversations with students entering the workforce and the business leaders who hire them have revealed something important: to stay relevant in this new economic reality, higher education needs a dramatic realignment. Instead of educating college students for jobs that are about to disappear under the rising tide of technology, 21st century universities should liberate them from outdated career models and give them ownership of their own futures. They should equip them with the literacies and skills they need to thrive in this new economy defined by technology, as well as continue providing them with access to the learning they need to face the challenges of life in a diverse, global environment. Higher education needs a new model and a new orientation away from its dual focus on undergraduate and graduate students. Universities must broaden their reach to become engines for lifelong learning.

There is a great deal of evidence that we need such an educational shift. An oft-quoted 2013 study from Oxford University found that nearly half of U.S. jobs are at risk of automation within the next twenty years. In many cases, that prediction seems too leisurely. For example, new robotic algorithmic trading platforms are now tearing through the financial industry, with some estimates holding that software will replace between one-third and one-half of all finance jobs in the next decade. A 2015 McKinsey report found that solely by using existing technologies, 45 percent of the work that human beings are paid to do could be automated, obviating the need to pay human employees more than $2 trillion in annual wages in the United States.

This is not the first time we have faced a scenario like this. In past industrial revolutions, the ploughmen and weavers who fell prey to tractors and spinning jennies had to withstand a difficult economic and professional transition. However, with retraining, they could reasonably have expected to find jobs on the new factory floors. Likewise, as the Information Age wiped out large swaths of manufacturing, many people were able to acquire education and training to obtain work in higher-skilled manufacturing, the service sector, or the office park. Looking ahead, education will remain the ladder by which people ascend to higher economic rungs, even as the jobs landscape grows more complex. And it undoubtedly is getting knottier. One of the reasons for this is that the worldwide supply of labor continues to rise while the net number of high-paying, high-productivity jobs appears to be on the decline. To employ more and more people, we will need to create more and more jobs. It is not clear where we will find them.

Certainly, the emergence of new industriessuch as those created in the tech sectorwill have to step up if they are going fill this gap. According to the U.S. Bureau of Labor Statistics, the computer and information technology professions are projected to account for a total of 4.4 million jobs by 2024. In the same period, the labor force, age 16 and older, is expected to reach 163.7 million. Adding to the disjoint is the remarkable labor efficiency of tech companies. For instance, Google, the standard bearer for the new economy, had 61,814 full-time employees in 2015. At its peak in 1979, in contrast, General Motors counted 600,000 employees on its payroll. To address the deficit, well need creative solutions.

Apart from automation, many other factors are stirring the economic pot. Globalization is the most apparent, but environmental unsustainability, demographic change, inequality, and political uncertainty are all having their effects on how we occupy our time, how we earn our daily bread, and how we find fulfillment. Old verities are melting fast. The remedies are not obvious.

Some observers have been encouraged by the growth of the gig economy, in which people perform freelance tasks, such as driving a car for Uber, moving furniture through TaskRabbit, or typing text for Amazon Mechanical Turk. But earnings through these platforms are limited. Since 2014, the number of people who earn 50 percent or more of their income from gig platforms has actually fallen. In general, these platforms give people a boost to earnings and help to pay the monthly bills. But as an economic engine, they have not emerged as substitutes for full-time jobs.

Of the new full-time jobs that are appearing, many are so-called hybrid jobs that require technological expertise in programming or data analysis alongside broader skills. Fifty years ago, no one could have imagined that user-experience designer would be a legitimate profession, but here we are. Clearly, work is changing. All these factors create a complex and unexplored terrain for job seekers, begging some important questions: How should we be preparing people for this fast-changing world? How should education be used to help people in the professional and economic spheres?

As a university president, this is no small question for me. As a matter of fact, the university I lead, Northeastern, is explicitly concerned with the connections between education and work. As a pioneer in experiential learning, grounded in the co-op model of higher education, Northeasterns mission has always been to prepare students for fulfillingand successfulroles in the professional world. But lately, as I have observed my students try to puzzle out their career paths, listened to what employers say they are looking for in new employees, and take stock of what I read and hear every day about technologys impact on the world of professional work, I have come to realize that the existing model of higher education has yet to adapt to the seismic shifts rattling the foundations of the global economy.

Machines will help us explore the universe, but human beings will face the consequences of discovery.

I believe that college should shape students into professionals but also creators. Creation will be at the base of economic activity and also much of what human beings do in the future. Intelligent machines may liberate millions from routine labor, but there will remain a great deal of work for us to accomplish. Great undertakings like curing disease, healing the environment, and ending poverty will demand all the human talent that the world can muster. Machines will help us explore the universe, but human beings will face the consequences of discovery. Human beings will still read books penned by human authors and be moved by songs and artworks born of human imagination. Human beings will still undertake ethical acts of selflessness or courage and choose to act for the betterment of our world and our species. Human beings will also care for our infants, give comfort to the infirm, cook our favorite dishes, craft our wines, and play our games. There is much for all of us to do.

To that end, this book offers an updated model of higher educationone that will develop and empower a new generation of creators, women and men who can employ all the technological wonders of our age to thrive in an economy and society transformed by intelligent machines. It also envisions a higher education that continues to deliver the fruits of learning to students long after they have begun their working careers, assisting them throughout their lives. In some ways, it may seem like a roadmap for taking higher education in a new direction. However, it does not offer a departure as much as a continuity with the centuries-old purpose of colleges and universitiesto equip students for the rigors of an active life within the world as it exists today and will exist in the future. Education has always served the needs of society. It must do so now, more than ever. That is because higher education is the usher of progress and change. And change is the defining force of our time.


Education is its own reward, equipping us with the mental furniture to live a rich, considered existence. However, for most people in an advanced society and economy such as ours, it also is a prerequisite for white-collar employment. Without a college degree, typical employees will struggle to climb the economic ladder and may well find themselves slipping down the rungs.

When the economy changes, so must education. It has happened before. We educate people in the subjects that society deems valuable. As such, in the 18th century, colonial colleges taught classics, logic, and rhetoric to cadres of future lawyers and clergymen. In the 19th century, scientific and agricultural colleges rose to meet the demands of an industrializing world of steam and steel. In the 20th century, we saw the ascent of professional degrees suited for office work in the corporate economy.

Today, the colonial age and the industrial age exist only in history books, and even the office age may be fast receding into memory. We live in the digital age, and students face a digital future in which robots, software, and machines powered by artificial intelligence perform an increasing share of the work humans do now. Employment will less often involve the routine application of facts, so education should follow suit. To ensure that graduates are robot- proof in the workplace, institutions of higher learning will have to rebalance their curricula.

A robot-proof model of higher education is not concerned solely with topping up students minds with high-octane facts. Rather, it refits their mental engines, calibrating them with a creative mindset and the mental elasticity to invent, discover, or otherwise produce something society deems valuable. This could be anything at alla scientific proof, a hip-hop recording, a new workout regimen, a web comic, a cure for cancer. Whatever the creation, it must in some manner be original enough to evade the label of routine and hence the threat of automation. Instead of training laborers, a robot-proof education trains creators.

The field of robotics is yielding the most advanced generation of machines in history, so we need a disciplinary field that can do the same for human beings. In the pages that follow, I lay out a framework for a new disciplinehumanicsthe goal of which is to nurture our species unique traits of creativity and flexibility. It builds on our innate strengths and prepares students to compete in a labor market in which brilliant machines work alongside human professionals. And much as todays law students learn both a specific body of knowledge and a legal mindset, tomorrows humanics students must master specific content as well as practice uniquely human cognitive capacities.

In the chapters ahead, I describe both the architecture and the inner workings of humanics, but here I begin by explaining its twofold nature. The first side, its content, takes shape in what I call the new literacies. In the past, literacy in reading, writing, and mathematics formed the baseline for participation in society, while even educated professionals did not need any technical proficiencies beyond knowing how to click and drag through a suite of office programs. That is no longer sufficient. In the future, graduates will need to build on the old literacies by adding three moredata literacy, technological literacy, and human literacy. This is because people can no longer thrive in a digitized world using merely analog tools. They will be living and working in a constant stream of big data, connectivity, and instant information flowing from every click and touch of their devices. Therefore, they need data literacy to read, analyze, and use these ever-rising tides of information. Technological literacy gives them a grounding in coding and engineering principles, so they know how their machines tick. Lastly, human literacy teaches them humanities, communication, and design, allowing them to function in the human milieu.

As noted earlier, knowledge alone is not sufficient for the work of tomorrow. The second side of humanics, therefore, is not a set of content areas but rather a set of cognitive capacities. These are higher-order mental skillsmindsets and ways of thinking about the world. The first is systems thinking, the ability to view an enterprise, machine, or subject holistically, making connections between its different functions in an integrative way. The second is entrepreneurship, which applies the creative mindset to the economic and often social sphere. The third is cultural agility, which teaches students how to operate deftly in varied global environments and to see situations through different, even conflicting, cultural lenses. The fourth capacity is that old chestnut of liberal arts programs, critical thinking, which instills the habit of disciplined, rational analysis and judgment.

Together, the new literacies and the cognitive capacities integrate to help students rise above the computing power of brilliant machines by engendering creativity. In doing so, they enable them to collaborate with other people and machines while accentuating the strengths of both. Humanics can, in short, be a powerful toolset for humanity.

This book also explores how people grasp these tools. To acquire the cognitive capacities at a high level, students must do more than read about them in the classroom or apply them in case studies or classroom simulations. To cement them in their minds, they need to experience them in the intensity and chaos of real work environments such as co-ops and internships. Just as experiential learning is how toddlers puzzle out the secrets of speech and ambulation, how Montessori students learn to read and count, and how athletes and musicians perfect their jump shots or arpeggios, it also is how college students learn to think differently. This makes it the ideal delivery system for humanics.

A new model of higher education must, however, account for the fact that learning does not end with the receipt of a bachelors diploma. As machines continue to surpass their old boundaries, human beings must also continue to hone their mental capacities, skills, and technological knowledge. People rarely stay in the same career track they choose when they graduate, so they need the support of lifelong learning. Universities can deliver this by going where these learners are. This means a fundamental shift in our delivery of education but also in our idea of its timing. It no longer is sufficient for universities to focus solely on isolated years of study for undergraduate and graduate students. Higher education must broaden its view of whom to serve and when. It must serve everyone, no matter their stage in life.

By 2025, our planet will count eight billion human inhabitants, all of them with human ambition, intelligence, and potential. Our planet will be more connected and more competitive than the one we know today. Given the pace of technologys advance, we can predict that computers, robots, and artificial intelligence will be even more intricately intertwined into the fabric of our personal and professional lives. Many of the jobs that exist now will have vanished. Others that will pay handsomely have yet to be invented. The only real certainty is that the world will be differentand with changes come challenges as well as opportunities. In many cases, they are one and the same.

Education is what sets them apart.

Excerpted from Robot Proof: Higher Education in the Age of Artificial Intelligence by Joseph E. Aoun. Copyright 2017 by Joseph E. Aoun. Published by MIT Press.

Read more:

Technorati Tags: ,

Unravelling Ropes Into Fractal-Like Patterns (10 Photos)

In an ongoing series of artworks entitled ‘Ciclotramas‘, Brazilian artist Janaina Mello Landini unravels ropes into incredible fractal patterns that evoke tree roots, river basins, lightning strikes and circulatory systems.

Landini has been developing this concept since 2010, using threads and strings to create site-specific installations that occupy the space in an immersive way. She adds:

The idea is to “unstitch†Time from its inside, unraveling the threads of the same rope in constant bifurcations, until the last indivisible stage is reached, a point that holds everything together in perfect equilibrium.

Below you will find our favourite Ciclotramas but be sure to check out her website for additional shots and dozens of more examples. Janaina is represented by the Zipper Gallery in São Paulo, Brazil

Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation


Janaina Mello Landini
Website | Gallery Representation

Read more:

Technorati Tags: , , , , ,

The Lava Lamps That Help Keep The Internet Secure

At the headquarters of Cloudflare, in San Francisco, there’s a wall of lava lamps: the Entropy Wall. They’re used to generate random numbers and keep a good bit of the internet secure: here’s how.

For a technical overview of the Entropy Wall click here.

Video by YouTuber Tom Scott

Read more:

Technorati Tags: , , , , , , ,

Can you solve it? Secrets of Russian intelligence

Three puzzles that came in from the cold

Hi guzzlers,

Every day we read stories concerning the prowess of Russian hackers. But why are they so good? A clue may lie in the fact that Russia has long excelled in maths outreach, which has been instrumental in creating a supply of people with the right skills. More of this later. Meanwhile, here are three puzzles with Russian origins.

1. Find a solution to the equation

28x+ 30y + 31z = 365

where x, y, and z are positive whole numbers.

2. Place five stones on an 8×8 grid in such a way that every square consisting of 9 cells has only one stone in it.

3. A colony of chameleons on an island currently comprises 13 green, 15 blue and 17 red individuals. When two chameleons of different colours meet, they both change their colours to the third colour. Is it possible that all chameleons in the colony eventually have the same colour?

The first question was told to me recently by Nikolai Andreev, of the Steklov Mathematical Institute, part of the Russian Academy of Sciences. It should take you a few seconds to solve.

The second question is taken from a fantastic after-school programme run by three Russian emigres in London. They call themselves We Solve Problems, and use two approaches used in Russia: maths circles, in which students can delve deeper into topics, and maths battles, which are like the maths equivalent of a debating society. Check out their website, where secondary school children can apply to attend weekly maths battles in London free of charge.

The third question is a stunner. It was first set in 1984 in the International Mathematics Tournament of the Towns, a wonderful maths competition founded in 1980 in Russia that now involves students in more that 100 cities and towns around the world (but mostly in Russia). The idea is to test ingenuity, rather than rote learning.

Ill be back at 5pm with the solutions and full explanations. Da? No spoilers BTL please, but do talk about great Russian mathematicians, or any experiences with Russian teaching methods.

Page-turning Japanese, I really think so.

If you have read this far, you have already solved another puzzle. What to put on your Christmas list! My latest book Puzzle Ninja: Pit Your Wits against the Japanese Masters, contains more than 200 of the most original, beautiful and interesting puzzles that have been crafted in Japan over the last few years.

I set a puzzle here every two weeks on a Monday. Send me your email if you want me to alert you each time I post a new one. Im always on the look-out for great puzzles. If you would like to suggest one, email me.

Read more:

Technorati Tags: ,

Lego’s ‘Women of NASA’ sale lifts off, lands as best-selling toy

(CNN)Skyrocketing sales has landed Lego’s new “Women of NASA” play set as Amazon’s No. 1 best-selling toy in just 24 hours.

Astronomer Nancy Grace Roman, computer scientist Margaret Hamilton, and astronauts Sally Ride and Mae Jemison, the four women who played vital roles in the US space program are now immortalized in a 231-piece Lego set, accompanied by three builds illustrating their areas of expertise.
The set went on sale Wednesday morning, at a price of $24.99, and it quickly sold out on Amazon, creating great positive feedback on social media under #WomenofNASA.
    “Women of NASA” was first pitched to Lego Ideas in 2016 by Maia Weinstock, deputy editor of MIT News, under the headline “Ladies rock outer Space.”
    Weinstock has been designing custom mini-figures of scientists and engineers for more than seven years as a way to increase the visibility of professionals doing fascinating things in the STEM fields.
    “I wanted to provide kids with a play experience that would help them learn about these women in particular but also to help boys and girls know that women have been a part of NASA’s history from the beginning, even though their work has often been overlooked or underappreciated,” Weinstock said.
    The final design of the set was done by Lego designers Tara Wike and Gemma Anderson. Wike visited Weinstock and Margaret Hamilton, one of the scientists in the set, to present the final design.
    “It was a great experience to give these amazing women their new Lego identity and a great honor to personally present Margaret Hamilton with her very own minifigure,”Wike said in a news release, adding that she hopes this set will inspire children to make their dreams come true.
    In the past, the toy manufacturer has been criticized for the lack of professional female characters, and after a letter written by a 7-year-old in 2014 made headlines, Lego began working on stronger female characters.
    “Any product that lets girls see themselves in careers like this is important for children of all genders,” said Weinstock. “It provides girls an added boost in thinking that they can pursue a career such as mathematics or engineering, especially because traditionally girls have not been encouraged to be a part of these and other technical fields. It also shows boys that girls and women belong in these areas and have been contributing important works to them throughout history.”
    Although the “Women of NASA” set is sold out on Amazon, it was still available on the Lego store website on Thursday night.

    Read more:

    Technorati Tags: , ,

    What should I teach my children to prepare them to race with the robots?

    I must prepare my sons to adapt to the fourth industrial revolution but that means sending them to schools that are equipped to exceed the averages

    Years ago, as a reporter in Seattle, I watched Microsoft CEO Steve Ballmer decry Washington states education system. He said Microsoft couldnt hire enough locals because our schools dont produce the kinds of minds he needed.

    At the time, I was angry. He and his cohort, most notably Jeff Bezos of Amazon, contributed serious money to the campaign against a state income tax on the wealthy that would have funneled billions to our schools. Now I feel a pinch deep in my stomach, an emotion so primal I hesitate to name it.

    As a mother, my time is come, or nearly done, and my childrens just begun.

    Automation will absorb all of the jobs it can reach, whether on the factory floor or in an office. Artificial intelligence has already taken over the corporate earnings analyses I once produced as a business journalist. By the best measures Ive been able to find, machines will displace about half of American jobs by the time my toddlers look for work.

    This new era has been called the second machine age, the fourth industrial revolution, the information economy.

    From certain angles, Seattle residents seem well positioned to access the highly paid and creative jobs that arise from combining cutting-edge technologies with the exponential powers of computing and big data. My city is now considered a global city not because of the port, which put our state on the maps when they were still being drawn, but because of the presence of Microsoft, Amazon and numerous tech startups.

    Amazon occupies one fifth of all office space in downtown Seattle, a short ride from my neighborhood on light rail. Incoming waves of well-educated tech workers have helped double the median home price during the past five years.

    Many of these rich young people call themselves progressive. Are they proud to be joining the nations most regressive tax structure? In our state, poor people pay eight times as much of their family income to taxes as the wealthy 1%. Lacking a personal income tax, Washington state relies on sales tax and has long looked to levies to fund schools, parks and other social needs.

    When I moved to Seattle in 2004, I marveled that the state didnt take a cut of my income from the now-defunct Seattle Post-Intelligencer. It took me a while to contemplate what it means for an entire society to act against the interests of its children.

    College-level tuitions before college

    To survive the extinction of an entire class, I must prepare my two- and three-year-old sons to race with the robots, and not against them.

    Our kids are going to meet an economy with far fewer entry-level positions and will have to clamber up a receding ladder. That means being in schools equipped to exceed the averages, not rising to meet them.

    Washington state has underfunded our schools so long that our governments negligence was deemed unconstitutional by our state supreme court, which fined the state $100,000 a day for failing to provide a future for our children.

    Years into this public shaming, the legislature came up with a multibillion-dollar package to fund basic education in our state, though they didnt manage to pass a capital budget before students went back to school after a long, dry summer.

    Amazon Go opens to Amazon employees in its Beta program in Seattle. Photograph: Paul Gordon/Zuma Press / eyevine

    From my porch, I can see the chain-link fence blur into gray around the asphalt playground of our neighborhood public school. On weekday mornings, my closest friends walk to Hawthorne Elementary with their children, ducklings that cluster at crosswalks along streets known for gunfire. A new home just sold for nearly a million dollars at the end of our block, but people keep getting shot and dying at our community playfield.

    Despite valiant efforts by its admirable principal, committed educators, engaged parents and resilient students, Hawthorne has been labeled failing since long before my husband and I bought a peeling house from a nice couple who raised their family here.

    Less than half of the schools fourth and fifth graders meet the states standards in math, which makes me doubt that our educational system is preparing these kids to thrive in the glittering economy they were born under. Five years ago, the office of the superintendent of public instruction ranked Hawthorne among the bottom 5% of the state, according to test passage rates.

    This, in a city known for minting billionaires.

    In The Second Machine Age, authors Erik Brynjolfsson and Andrew McAfee, both MIT professors, recommend Montessori programs to prepare children for their future, with a focus on science, technology, engineering, arts and math. Thats Steam, for those not versed in educational acronyms.

    Developed to help poor children realize their own innate potential, Montessori schools practice self-directed learning with tactile materials that encourage the freewheeling creativity that formed tech CEOs such as Bezos and Googles co-founders.

    The private bilingual Montessori kindergarten I found 30 minutes away costs $20,000 a year.

    Despite college-level tuitions, about one quarter of Seattle students opt out of the public school system to study at private or parochial schools. To send my sons to Seattles best private schools would cost more than $700,000, and thats before they get to college.

    A survey of public schools in Seattle shows no Montessori options that my children can access, though a nearby program in Leschi was a success at first, drawing wealthier students into the public school system, bringing with them the engagement of their families.

    The Leschi teachers were so distressed by the resulting racial, linguistic and housing disparities between the traditional and Montessori classes that they melded the programs, rather than working to recruit more students of color into the Montessori program, which they could not afford to expand. A taskforce opted against including technology in the curriculum, fearful they would attract too many white families.

    I believe in diversity; my own blood is blended. A first generation Latinx, Ive invested years of effort to raise my sons to be bilingual. I also want to work toward equity in a city whose neighborhood schools reflect the segregation compelled by redlining and white flight.

    Leschis students are learning hard truths about equity, but theyre improving together. Maybe thats enough. But I worry when well-intentioned people lacking the resources to serve their students equally decide against teaching technology, the lingua franca of our world. Even the state administers student tests by computer.

    I sought answers from Chris Reykdal, state superintendent of public instruction. The injustice of it all is that we have never seen technology as a core learning, Reykdal said. Do we still consider technology an enrichment, or should it be a more profound part of basic education? The state hasnt made that decision yet.

    Washington has hundreds of school districts overseen by elected boards that enact tangled mandates without the resources to see them through. All over the state, schools used levy monies to take care of basics and pay their teachers, rather than acquiring and teaching technology.

    Deb Merle is Governor Jay Inslees K-12 education adviser. Merle said that designating technology as part of basic education, which would ensure that the dollars flowed to their purpose, is not a state priority, though she recognized that Reykdals predecessor also advocated for keeping technology funds separate.

    I dont think we teach enough science, period. Thats what I spend a lot of time worrying about, not what kind of science, Merle said. Our elementary schools teach less than one hour per week of science.

    Steam as a social justice issue

    I kept dialing, determined to maintain the education-fueled trajectory of my family.

    My kin have lived in dictatorship-induced diaspora since famine swept Spain under Franco; they later fled Batista, who ruled Cuba before Castro. I am not conditioned to expect social stability as a condition of being for any country.

    The meeting I most dreaded was closest to home. On the short walk to our neighborhood school, I decided to come right out and tell its principal, Sandra Scott, that I am afraid to send my kids to Hawthorne because the schools test scores, though on the rise, are low enough to make me wince.

    Luckily, Scott is a pragmatic visionary, the kind of principal who inspires parents to put down the remote and join the PTA. Since 2009, Scott has led Hawthornes revitalization, winning admiration and awards from Johns Hopkins University for her program of school, family and community partnerships.

    Test scores dont define who the students are. Our kids are not a number, Scott said. There were things we needed to do differently or better like improving the academics and the school culture to bring families back into the community.

    To face the age of automation, it is recommended children are taught a program with a focus on science, technology, engineering, arts and math. Photograph: Will Walker / NNP

    Recognizing the opportunity that Seattles tech economy presents, Scott retooled Hawthorne to focus on Steam programming. Rather than cluster the high-performing test takers together which has segregated programs within diverse schools Hawthorne distributes them throughout classrooms. If a student excels in math, outstripping peers in that grades curriculum, the teacher walks that child to the next grade for math.

    When it comes to fifth-grade science, those efforts more than doubled the test passage rates over three years, from 20% to 46%. I ache upon rereading that last sentence the hope and pride in the increase, the grimace I cant help but make at where they started, and what remains to be accomplished.

    Scott and her staff find ways to make progress. But she doesnt have the funds for a technology teacher or trainings, so the lab will be largely unused this year. As a mother who cares about the kids who go to Hawthorne, I cant afford to wait for someone else to find those resources.

    The leaders of this school are working to undo the effects of intergenerational poverty that dates back to slavery and other forced migrations. More than half of the students are eligible for free and reduced lunches. A quarter of the students are learning the language theyre taught in. Scores reflect circumstances, which is why Reykdal is refocusing the state on racial gaps, poverty gaps and English language gaps, down to the school level.

    Many of the jobs first displaced by automation belong to peoples of color, women and others who depend on a combination of part-time positions. A federal council of economic advisers found an 83% likelihood that, by 2040, automation would displace jobs paying less than $20 per hour.

    In Washington, Steam-related jobs pay double the median wage, for starters. The people moving here to work for Microsoft, Amazon and Boeing make much more. When we choose not to provide public schools with the resources needed to provide educational access to those opportunities, we are consigning local students to lesser-paid sectors of the economy, the very same that are vulnerable to automation. In other words, we are allowing our government to consecrate our children to poverty in real time.

    Mass unemployment would make American society more violent, our law enforcement more brutal and our peoples more vulnerable to genocide. Automation is a social justice issue, and if history is any teacher, it shows us that vast swaths of disenfranchised peoples are a harbinger of war.

    Problems that reflect the world

    Whenever I have a problem thats too big to solve, I call my dad, and we argue about what to do. He told me the solution was simple. I should move. The only financially feasible choice would be the suburbs.

    Something in me balks at leaving a city I love, and especially our neighborhood, where my children are happy. As a community, we just celebrated our 10th annual block party, a Cuban pig roast that my husband and I organize for our wedding anniversary. Our neighbors come bearing side dishes, canopies and games, and we dance until the DJs stop playing. The conversations we start on that night have lasted a decade. I want to stay.

    As native Spanish speakers, my sons could option into the bilingual public schools on the other side of our gridlocked downtown, north of the covenants which kept people of color from buying homes. Those schools wait lists are legendary, but I am uncomfortable with the mostly white and relatively well-off demographics produced by saving only 15% of seats for native speakers. I want my kids to feel at home in a country that contains multitudes, which is why we moved to one of our nations most diverse zip codes.

    Computers solve the problems theyre given. And so we must ask ourselves what we value, and whom.

    Not every child wants to be a robotics engineer. But without the modes of thought elicited by learning computer science from an early age, many Washington state students will not be competitive for the jobs that remain. I want my own sons to be chosen and better yet, able to choose as I was, though I fell for a profession whose financial structures imploded five years after my college graduation.

    I hope my privileged vulnerability encourages you to reflect on those truly trapped by our system. This essay invokes my worries as a mother, and with them, my socioeconomic position. Hawthorne is a happy place with diverse classrooms whose problems reflect the world, but I am glad of the years I have left to decide what my kids truly need to learn.

    There can be no denying that I am one of the gentrifiers of this neighborhood, and with the honor of living here comes the responsibility to contribute. Looking at whats coming in the second machine age tremendous opportunities, to be sure, but also massive loss of what weve known as jobs I feel compelled to join those working toward a better future, minds whirring whenever problems arise.

    Two nonprofits, FIRST Washington and XBOT Robotics, have offered support and equipment for Hawthorne to start a Lego robotics league after school. Four parents signed up to lead teams during last nights PTA meeting, my very first.

    Its a start.

    Get involved

    To bolster Steam education for students, hybridized systems have sprung up as non-profits seek to prepare our children for the economy we will leave to them.

    First Washington: This nonprofit helps start and sustain after-school Lego robotics leagues from K-12.

    XBOT Robotics: Operating in one of the nations most diverse zip codes, offering robotics programming K-12. Free online programming for learners at all levels. Work through problems with your kids.

    Technology Access Foundation: Helping people of color access Stem-related education in middle school, high school and beyond.

    Washington State Opportunity Scholarship: A non-profit that funds thousands of Stem scholarships for Washingtons college-bound high school graduates. More than half of those scholarship recipients are students of color, women and/or the first in their family to access a higher education, if not all three.

    Teals (Technology, Education and Literacy in Schools): Matches professionals with teachers to co-teach computer science in classrooms.

    Seattle Mesa (Mathematics Engineering Science Achievement): Provides scholarships, in-class math and science projects, advanced learning opportunities, tutoring, math camp and teacher trainings.

    Read more:

    Technorati Tags: , , , , , ,